Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165852, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517724

RESUMO

Groundwater in North China type coal mine area is an important source of domestic, industrial and agricultural water. To explore the sulfate increasing mechanism of groundwater in mining area and identify key influencing factors. In this paper, hydrochemistry and multi-isotope tracer techniques such as δ34SSO4, δ18OSO4, δ2HH2O, δ18OH2O and δ13CDIC were used to study the groundwater circulation law and the migration and transformation mechanism of sulfate and carbonate in coal mine area. The results show that: the hydrochemical types of groundwater in the coal mine area are mainly HCO3- and SO42- anions, while the cations are mainly Ca2+ and Mg2+. The sulfate content is significantly increased, and the pH shows weak alkalinity; the relationship between δ18OH2O and δ18HH2O shows that the dynamic field of groundwater changes significantly after coal mining or closure, and limestone water mainly comes from surface water recharge through 'skylight' infiltration. The relationships between δ18OSO4 and δ18OH2O, δ34SSO4 and δ18OSO4 show that the sulfate in groundwater of coal mine area is mainly derived from sulfide oxidation. The ∆δ18OSO4-H2O value of groundwater in coal mine area is greater than 8 ‰, and the oxygen content in sulfate is 25 %-75 % from oxygen in water, indicating that coal mining has disturbed the groundwater in the study area from reducing environment to oxidizing environment, promoted sulfide oxidation, and accelerated the dissolution of carbonate minerals. The δ13CDIC value and δ34SSO4 value in the coal mine area are inversely proportional. The δ13CDIC of groundwater in the coal mine area is affected by the δ34SSO4 value to a certain extent. Sulfuric acid participates in the dissolution of carbonate minerals, making the pH value weak and alkaline as a whole. This paper expounds the migration and transformation law of sulfate in groundwater in coal mine area, which has practical significance for groundwater quality management. The research results can provide theoretical support for the rational development and utilization of groundwater resources in coal mine areas.

2.
Sci Total Environ ; 857(Pt 3): 159666, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302409

RESUMO

With the gradual increase of the coal mining depth, the mixing of multiple water sources intensifies and the activity of radium and radon in groundwater increases. Identifying the source of mine water inrush by using radium and radon isotopes is a new choice. In this paper, the mathematical statistics method, radioactive isotope decay theory, the mass conservation principle, and the numerical simulation method are used to analyze the influence of total dissolved solids (TDS), pH, and the hydrochemical ion content in groundwater on the isotope activity of radium, radon, uranium, thorium, and lead. The activity of thorium and lead is lower than the detection limit of the instrument, and the influence of coal mining activities on it is small. The simulation of the radium-radon mass balance in groundwater shows that the greater the adsorption coefficient (k) of solid particles in groundwater is, the more obvious the adsorption effect and the greater the influence on the radium-radon activity balance are. The radium-radon dating method is used to calculate the groundwater age. Results show that the groundwater age in the closed pit coal mining area is generally older than that in the mining coal mining area. Combined with the 222Rn, 226Ra, and 234U radioactive isotopes and temperature, a mixing water source identification model of limestone in the coal seam floor is constructed. The model shows that the radium activity and temperature of the groundwater are inversely proportional to the mixing ratio of the Permian sandstone water. From the closed pit coal mining area to the mining coal mining area, the radium radon activity of the groundwater increases gradually, the groundwater age decreases significantly, the water cycle is accelerated, the mixing ratio of the Permian sandstone water decreases gradually, the mixing ratio of the Ordovician limestone water increases gradually, and the risk of coal mine water inrush increases. The research results prove the feasibility of the new method for accurately discriminating the mixing water sources in coal mine areas, which is of great significance to the improvement of the theory of coal mine water disaster prevention and control.


Assuntos
Minas de Carvão , Água Subterrânea , Rádio (Elemento) , Radônio , Carvão Mineral/análise , Rádio (Elemento)/análise , Água , Carbonato de Cálcio , Tório , Água Subterrânea/química , Isótopos
3.
J Clin Lab Anal ; 36(10): e24653, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36217262

RESUMO

BACKGROUND: The most common inheritance pattern responsible for congenital deafness belongs to autosomal recessive non-syndromic hearing loss (ARNSHL) and mutations of the highly heterogeneous MYO15A locus are present in a large proportion of cases. METHODS: One Chinese family with ARNSHL was subjected to clinical evaluation and genetic analysis. We used targeted and whole exome sequencing with Sanger sequencing to identify and characterize mutations. Bioinformatics analysis was conducted to evaluate molecular functions. RESULTS: Three compound heterozygous MYO15A gene variants, including two novel variants, c.6804G > A (p.M2268I), and c.6188_6190delinsGTCA (p.F2063Cfs*60), responsible for deafness were identified. Pathogenicity was assessed by multiple bioinformatics analyses. CONCLUSION: We identified novel mutations of the MYO15A locus associated with ARNSHL in a Chinese family. The current findings expand the MYO15A pathogenic mutation spectrum to assist with genetic counseling and prenatal diagnosis.


Assuntos
Surdez , Exoma , Miosinas , Surdez/genética , Genes Recessivos , Humanos , Padrões de Herança , Mutação , Miosinas/genética , Linhagem
4.
Mol Cytogenet ; 14(1): 14, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658067

RESUMO

BACKGROUND: Molecular genetic testing for the 11p15-associated imprinting disorder Beckwith-Wiedemann syndrome (BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. An integrated molecular approach to analyze the epigenetic-genetic alterations is required for accurate diagnosis of BWS. CASE PRESENTATION: We reported a Chinese case with BWS detected by SNP array analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The genetic analysis showed a de novo duplication of 24 Mb at 11p15.5p14.3 is much longer than ever reported. MS-MLPA showed copy number changes with a peak height ratio value of 1.5 (three copies) at 11p15. The duplication of paternal origin with increase of methylation index of 0.68 at H19 and decreased methylation index of 0.37 at KCNQ1OT1. CONCLUSION: Combined chromosome microarray analysis and methylation profiling provided reliable diagnosis for this paternally derived duplication of BWS. The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

5.
J Int Med Res ; 48(8): 300060520947937, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32809904

RESUMO

OBJECTIVE: The aim of the study was to quantitatively assess the association of metallothionein 2A (MT2A) polymorphisms rs28366003 and rs1610216 with cancer risk. METHODS: Crude odd ratios (OR) with 95% confidence intervals (CI) were used to estimate associations of the polymorphisms with cancer risk. RESULTS: Six eligible case-control studies with 1899 cases and 2437 controls focused on rs28366003, and three of those six studies, with 548 cases and 926 controls, additionally focused on rs1610216. Pooled analysis showed that MT2A rs28366003 and rs1610216 were associated with cancer risk: (AG + GG) vs. AA, OR = 2.67; GG vs. (AG + AA), OR = 5.97; GG vs. AA, OR = 6.80; AG vs. AA, OR = 2.46; G vs. A, OR = 2.67 for rs28366003; and CC vs. (TC+TT), OR = 2.51; CC vs. TT, OR = 2.42 for rs1610216. Subgroup analysis based on ethnicity showed a significant association of rs28366003 with cancer risk in Asian and Caucasian populations. However, a significant association of rs1610216 with cancer risk was found only in the Asian population. CONCLUSION: MT2A rs28366003 and rs1610216 polymorphisms were associated with cancer risk and might serve as genetic biomarkers for predicting cancer risk. However, larger studies are needed to confirm these findings.


Assuntos
Metalotioneína , Neoplasias , Povo Asiático/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Metalotioneína/genética , Neoplasias/diagnóstico , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...